Implementation using NAND and NOR Gates

Combinational Logic

NAND Gate is Universal

-Therefore, we can build all functions we learned so far using NAND gates ONLY (Exercise: Prove that NOT can be built with NAND) -NAND is a UNIVERSAL gate

Graphic Symbols for NAND Gate

Two equivalent graphic symbols or shapes for the SAME
function

NOT-OR

Implementation using NANDs

Example: Consider $\mathrm{F}=\mathrm{AB}+\mathrm{CD}$

$$
\begin{aligned}
& \text { Proof: } \\
& F=F^{\prime \prime}=\left((A B)^{\prime} .(C D)^{\prime}\right)^{\prime} \\
&=\left((A B)^{\prime}\right)^{\prime}+\left((C D)^{\prime}\right)^{\prime} \\
&=A B+C D
\end{aligned}
$$

Implementation using NANDs

Consider $F=\sum m(1,2,3,4,5,7)-$ Implement using NAND gates

Rules for 2-Level NAND Implementations

1. Simplify the function and express it in sum-ofproducts form
2. Draw a NAND gate for each product term (with 2 literals or more)
3. Draw a single NAND gate at the $2^{\text {nd }}$ level (in place of the OR gate)
4. A term with single literal requires a NOT

NOR Gate is Universal

NOT

AND

OR

-Therefore, we can build all functions we learned so far using NOR gates ONLY (Exercise: Prove that NOT can be built with NOR)
\cdot NOR is a UNIVERSAL gate

Graphic Symbols for NOR Gate

Two equivalent graphic symbols or shapes for the

OR-NOT
 SAME function

NOT-AND

OR-NOT = NOT-AND

Implementation using NOR gates

Consider $F=(A+B)(C+D) E$

Implementation using NOR gates

Consider $\mathrm{F}=\Sigma \mathrm{m}(1,2,3,5,7)-$ Implement using NOR gates

$$
\begin{aligned}
& F^{\prime}(X, Y)=Y^{\prime} Z^{\prime}+X Z^{\prime}, \text { or } \\
& F(X, Y)=(Y+Z)\left(X^{\prime}+Z\right)
\end{aligned}
$$

Rules for 2-Level NOR Implementations

1. Simplify the function and express it in product of sums form
2. Draw a NOR gate (using OR-NOT symbol) for each sum term (with 2 literals or more)
3. Draw a single NOR gate (using NOT-AND symbol) the $2^{\text {nd }}$ level (in place of the AND gate)
4. A term with single literal requires a NOT

Reference

1. Moris Mano, "Digital Design With an Introduction to the Verilog HDL", $5^{\text {th }}$ Edition
2. Ahmad Almulhem, "Digital Design course Slides", KFUPM 2010
